fMRI functional networks for EEG source imaging.
نویسندگان
چکیده
The brain exhibits temporally coherent networks (TCNs) involving numerous cortical and sub-cortical regions both during the rest state and during the performance of cognitive tasks. TCNs represent the interactions between different brain areas, and understanding such networks may facilitate electroencephalography (EEG) source estimation. We propose a new method for examining TCNs using scalp EEG in conjunction with data obtained by functional magnetic resonance imaging (fMRI). In this approach, termed NEtwork based SOurce Imaging (NESOI), multiple TCNs derived from fMRI with independent component analysis (ICA) are used as the covariance priors of the EEG source reconstruction using Parametric Empirical Bayesian (PEB). In contrast to previous applications of PEB in EEG source imaging with smoothness or sparseness priors, TCNs play a fundamental role among the priors used by NESOI. NESOI achieves an efficient integration of the high temporal resolution EEG and TCN derived from the high spatial resolution fMRI. Using synthetic and real data, we directly compared the performance of NESOI with other distributed source inversion methods, with and without the use of fMRI priors. Our results indicated that NESOI is a potentially useful approach for EEG source imaging.
منابع مشابه
Incorporating priors for EEG source imaging and connectivity analysis
Electroencephalography source imaging (ESI) is a useful technique to localize the generators from a given scalp electric measurement and to investigate the temporal dynamics of the large-scale neural circuits. By introducing reasonable priors from other modalities, ESI reveals the most probable sources and communication structures at every moment in time. Here, we review the available priors fr...
متن کاملMultimodal Functional Network Connectivity: An EEG-fMRI Fusion in Network Space
EEG and fMRI recordings measure the functional activity of multiple coherent networks distributed in the cerebral cortex. Identifying network interaction from the complementary neuroelectric and hemodynamic signals may help to explain the complex relationships between different brain regions. In this paper, multimodal functional network connectivity (mFNC) is proposed for the fusion of EEG and ...
متن کاملAnalysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملLarge-Scale Functional Networks Identified from Resting-State EEG Using Spatial ICA
Several methods have been applied to EEG or MEG signals to detect functional networks. In recent works using MEG/EEG and fMRI data, temporal ICA analysis has been used to extract spatial maps of resting-state networks with or without an atlas-based parcellation of the cortex. Since the links between the fMRI signal and the electromagnetic signals are not fully established, and to avoid any bias...
متن کاملGeometrical interpretation of fMRI-guided MEG/EEG inverse estimates.
Magneto- and electroencephalography (MEG/EEG) and functional magnetic resonance imaging (fMRI) provide complementary information about the functional organization of the human brain. An important advantage of MEG/EEG is the millisecond time resolution in detecting electrical activity in the cerebral cortex. The interpretation of MEG/EEG signals, however, is limited by the difficulty of determin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 32 7 شماره
صفحات -
تاریخ انتشار 2011